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ABSTRACT

In this paper, we proposeGraphiDe, a novel DRAM-based processing-

in-memory (PIM) accelerator for graph processing. It transforms

current DRAM architecture to massively parallel computational

units exploiting the high internal bandwidth of the modern memory

chips to accelerate various graph processing applications. GraphiDe

can be leveraged to greatly reduce energy consumption and la-

tency dealing with underlying adjacency matrix computations by

eliminating unnecessary off-chip accesses. The extensive circuit-

architecture simulations over three social network data-sets in-

dicate that GraphiDe achieves on average 3.1× energy-efficiency

improvement and 4.2× speed-up over the recent DRAM based PIM

platform. It achieves ∼59× higher energy-efficiency and 83× speed-

up over GPU-based acceleration methods.
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1 INTRODUCTION

Nowadays, reaching high bandwidth of graph processing on top

of Von-Neumann architectures suffers from various challenges

[6], such as long memory access latency, intensified congestion

at I/Os, humongous data communication energy, and large leakage

power consumption for storing graph parameters that result in

over 90% bandwidth degradation on CPU-DRAM hierarchy [18].

In order to tackle these challenges, Processing-in-Memory (PIM),

as a potentially viable way to solve the memory wall challenge,

has been put forward [4, 11, 16]. The key idea of PIM is to realize

computation units inside memory to process data by leveraging

the inherent parallel computing mechanisms and exploiting large

internal memory bandwidth. Therefore, total memory bandwidth

for computation units scales well by increase memory capacity

leading to a significant reduction in latency and energy overheads

of data communication [3]. PIM architectures ideally should be

capable of performing bulk bit-wise operations which is needed in

many graph processing applications [12]. However, this has been

limited to basic logic operations such as AND, OR and XOR so far

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6252-8/19/05. . . $15.00
https://doi.org/10.1145/3299874.3317984

[12, 16], which are not necessarily applicable to a wide variety of

tasks except by imposing multi-cycle operations [5, 16] or large

in-memory computational units [11] to realize specific functions

such as addition.
The proposals for exploiting SRAM-based [2, 9] PIM architec-

tures can be found in recent literature. However, PIM in context

of main memory (DRAM- [3, 11, 15–17]) has drawn much more

attention mainly due to larger memory capacities and off-chip data

transfer reduction as opposed to SRAM-based PIM. Ambit [16]

shows DRAM-based graph processing acceleration by realizing

a majority function between every three rows and so can imple-

ment 2-input logic after saving operand data in reserved rows to

avoid data-overwritten. GraphH [6] and Graphpim [14] present

new designs based on Hybrid Memory Cube (HMC) to accelerate

large-scale graph processing tasks at architectural level.

From graph processing algorithm perspective, network topology

analysis can help us better understand the intricate connectivity of

complex networks in practical problems. For instance, degree cen-

trality is often used to measure the importance of a vertex. In social

networks, people with more connections tend to have more signifi-

cant influence in the community. The matching index is another

basic topology parameter characterizing the similarity between two

vertices in a network. It measures the ratio of common neighbors

for pairs of vertices. Evaluation of these network properties plays

an essential part in potential applications, such as social network

analysis and traffic flow control. The main goal of this paper is

to develop a parallel and energy-efficient PIM architecture that

could simultaneously work as main memory and realize a high

performance accelerator for such data-intensive graph processing

applications. The main contributions of this paper are summarized

as follows: (1) We propose a novel DRAM-based in-memory ac-

celerator, GraphiDe, based on set of novel microarchitectural and

circuit-level schemes. GraphiDe can perform any bulk bitwise op-

eration inside DRAM exploiting DRAM structure, and therefore

requiring low cost on top of commodity DRAM chip area. (2) We

provide case studies of how important graph processing workloads

can be partitioned and mapped to our architecture and how they

can benefit from it. (3) We evaluate our proposed scheme using

a variety of real-world social network graph data compared with

other state-of-the-art accelerators i.e. DRAM, HMC, and GPU.

2 PROCESSING-IN-DRAM BACKGROUND

A DRAM cell basically consists of two elements, a capacitor (stor-

age) and an Access Transistor (AT) (Fig. 1b B ). The drain and gate

of the AT is connected to the Bit-line (BL) and Word-line (WL), re-
spectively. DRAM cell encodes the binary data by the charge of the

capacitor. It represents logic ‘1’ when the capacitor is full-charged,

and logic ‘0’ when there is no charge. Technically, accessing data

from a DRAM’s sub-array (write/read) has three consecutive steps
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Figure 1: (a) The GraphiDe memory organization, (b) Block level scheme of computational sub-array and peripheral circuitry.

[15, 16]. During the first step (i.e. ACTIVATE), activating the speci-
fied row, data is copied from the DRAM cells to the Sense Amplifiers

(SA). Then in the next step, such data can be accessed from the SAs

by a READ or WRITE command. In addition, multiple READ/WRITE
commands can be issued to an identical row. Afterwards, the acti-

vated row is precharged by issuing PRECHARGE command.

Following the aforementionedDRAMmechanism, series of circuit-

level design have been presented, that enable design opportunity of

applying PIM strategy to DRAM cell arrays. RowClone [17] presents

an innovative mechanism to realize fast and efficient copy operation

within DRAM sub-arrays without need to send the data to the pro-

cessing unit. In this scheme, two back-to-back ACTIVATE commands

to the source and destination rows without PRECHARGE command

in between, leads to a multi-kilo byte in-memory copy operation.

Ambit [16] extends the idea by realizing a 3-input majority function

(Maj3)-based operation in memory by issuing ACTIVATE command

to three rows simultaneously followed by a single PRECHARGE com-

mand so-called Triple Row Activation (TRA) method. Considering

one row as the control, initialized by ‘0’/‘1’, Ambit can readily im-

plement in-memory AND2/OR2 function. The NOT function has been

also carried out in different works employing Dual-Contact Cells

(DCC) [13, 16] with issuing two back-to-back ACTIVATE commands.

DCC (Fig. 1b C ) first activates theWLdcc1 of input DRAM cell, and

reads the data out to the SA through BL. It then activateWLdcc2 to

connect BL to the same capacitor and so writes the negated result

back to DCC. Dracc [7] implements a carry look-ahead adder by

enhancing Ambit to accelerate convolutional neural networks.

3 GRAPHIDE DESIGN

GraphiDe is designed to be an independent, high-performance,

energy-efficient accelerator based on main memory architecture.

The main memory rank is a set of DRAM chips. Each chip is di-

vided into multiple Banks. Banks within the same chip typically

share I/O, buffer and banks in different chips working in a lock-step

manner. Each bank consists of multiple memory matrices (mats).

The general mat organization of GraphiDe is shown in Fig. 1a. Each

mat consists of multiple computational memory sub-arrays con-

nected to a Global Row Decoder (GRD) and a shared Global Row

Buffer (GRB). According to the physical address of operands within

memory, GraphiDe’s Controller (Ctrl) is able to configure the sub-

arrays to perform data-parallel intra-sub-array computations. Our

design is motivated by Ambit [16] PIM method, which leverages

charge sharing among different rows to perform logic operations,

but with significant modifications. We divide the GraphiDe’s sub-

array row space into two distinct regions as depicted in Fig. 1b: 1-

Data rows (500 rows out of 512) that include the typical DRAM

cells B connected to a regular Row Decoder (RD), and 2- Com-

putation rows (12), connected to a Modified Row Decoder (MRD)

(Fig. 1b A ), which enables bulk bitwise in-memory operations

between copied operands. Eight computational rows (x1, ...,x8)
include typical DRAM cells and four rows (dcc1, ...,dcc4) are allo-
cated to special DCCs C enabling NOT function in every sub-array.

In the following, we propose dual-row in-memory AND-OR and

addition operations that further enhance Ambit to perform graph

processing tasks.

3.1 Dual-row in-memory logic

With a careful observation on Ambit’s TRA method, we notice that

it imposes an excessive latency and energy to memory chip which

could be alleviated by rethinking about the process. Given R=AopB
function (op ∈ AND2/OR2), Ambit takes 4 consecutive steps to cal-

culate the result as: 1-RowClone data of row A to row x1 (Copying
first operand to a computation row to avoid data-overwritten), 2-

RowClone of row B to x2, 3-RowClone of ctrl row to t3 (Copying
initialized control row to a computation row), 4-TRA and RowClone

data of row x1 to R row (Computation and Writing-back the result).

As a matter of fact, every RowClone command imposes ∼80ns [17],

therefore TRAmethod takes averagely 320ns to perform in-memory

operations. Our key idea to perform dual-row bit-line computing

in GraphiDe is still based on majority function but by selecting

different thresholds (references) when performing the charge shar-

ing between selected memory cell(s). The proposed reconfigurable

SA, as depicted in Fig. 1b D , consists of a regular SA with two
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Figure 2: Realization of AND2 function within GraphiDe.
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back-to-back inverters connected to two fixed reference-capacitor

branches E that can be selected by control bits (CAND , COR ) by

the sub-array’s Ctrl F . This design basically forms a capacitive

voltage divider between two selected cells by MRD and the acti-

vated reference (connected to either GND orVdd), driving a CMOS

inverter, to implement AND2 or OR2 functions, respectively.

GraphiDe’s Dual Row Activation method (DRA) eliminates the

need for the third RowClone step in Ambit’s AND2/OR2 operations

and saves two initialized memory rows used for controls per sub-

array at the cost of adding two low-overhead reference capacitors in

SA unit. Fig. 2 shows the realization of AND2 operation inGraphiDe’s
sub-array. Consider A and B operands are RowCloned from Data

rows to x1 and x2 rows 1 and both BL and BL are precharged to
Vdd
2 . The DRA simultaneously activates twoWLs and the corre-

sponding reference (CAND ) for charge-sharing 2 . During sense

amplification 3 , with the similar capacitance (Cc ) of memory cells

and the reference, input voltage of first inverter (Vi ) in SA is simply

derived as Vi =
n .Vdd
C , where n denotes the number of DRAM cells

storing logic ‘1’ and C represents the total number of unit capac-

itors (Cc ) connected to the inverter. Thus, the inverter acts as a

threshold detector by amplifying deviation from
Vdd
2 and realizes

a NAND2 function on BL and consequently AND2 function (AB) on
BL. GraphiDe can perform such DRA-based operations in ∼240ns

by eliminating the need for the third RowClone step in Ambit’s

operations. In this work, we use Ambit’s TRA method just to di-

rectly realize in-memory majority function (Maj3) and AND2/OR2
operations are realized through DRA method.

3.2 In-memory adder

Here, we also propose Quintuple Row Activation method (QRA), as

an extension for the TRAmethod, realizing 5-input (Maj5) operation.
In this method, GraphiDe’s MRD (Fig. 1b A ) helps to activate five

WLs, simultaneously. During the precharged state as shown in Fig.

3 1 , both BL and BL are connected to
Vdd
2 . By activating the five

WLs (WLx1 toWLx5), the memory cells storing input operands

start to charge sharing 2 . In this case, since three of the five cells

are initially in the charged state, charge sharing results in a positive

deviation on the BL. Therefore, by activating the Enable (En), such

deviation from
Vdd
2 is amplified 3 and the SA drives the BL toVdd

and accordingly, fully charges all the five cells. Based on Maj3 and

Maj5 schemes, we now present a parallel in-DRAM computation

and mapping method for addition (add) operation to accelerate a

wide spectrum of graph processing tasks. Assume Di ,D j , and Dk

as input operands, the carry-out (Cout ) of the Full-Adder (FA) can
be generated through MAJ3(Di ,D j ,Dk ) = DiD j + DiDk + D jDk

using TRA method. Moreover, the Sum can be readily carried out

throughMAJ5(Di ,D j ,Dk ,Cout ,Cout ) with only writing back the

Cout into memory (leveraging two DCC rows) and then applying

QRA method. This will be further elaborated in subsection 3.3.

3.3 ISA support

While GraphiDe is meant to be an independent high-performance

and energy-efficient accelerator, we need to expose it to program-

mers and system-level libraries to utilize it. From a programmer

perspective, GraphiDe is more of a third party accelerator that can

be connected directly to the memory bus or through PCI-Express

lanes rather than a memory unit, thus it is integrated similar to that
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Figure 3: Realization of MAJ5 function within GraphiDe.

of GPUs. Therefore, a virtual machine and ISA for general-purpose

parallel thread execution need to be defined similar to PTX [1] for

NVIDIA. Accordingly, the programs are translated at install time

to the GraphiDe hardware instruction set discussed here to realize

the functions tabulated in Table 1. The micro and control transfer

instructions are not discussed here.

GraphiDe is developed based on ACTIVATE-ACTIVATE-PRECHARGE
command referred to as AAP primitives. As thoroughly explained

in Ambit [16], most bulk bitwise operations involve a sequence of

AAP commands. There are five types of AAP primitives supported by

GraphiDe that only differ from number of activated source or des-

tination rows, 1- AAP (src, des) that runs the following commands

sequence: ACTIVATE source address; ACTIVATE destination address;

PRECHARGE. This is manly used for copy and NOT functions as in-

dicated Table 1. 2- AAP (src, des1, des2) that is designed to copy the

result of an operation simultaneously to two destination rows. 3-

AAP (src1, src2, des, Ctrl) that performs DRA method by activating

two source addresses along with a control input (‘0’ for CAND / ‘1’

forCOR ) and then writes back the result on the destination address.

4- AAP (src1, src2, src3, des) that performs TRA method by activat-

ing three source rows simultaneously and writing back the MAJ3 or
MIN3 result on the destination address. 5- AAP (src1, src2, src3, src4,

src5, des) that performs QRA method on five sources and write the

result back to the destination address.

Table 1: The basic functions supported by GraphiDe.

Function Operation Command Sequence AAP Type

copy Dr ← Di AAP(Di ,Dr ) 1

NOT Dr ← Di
AAP(Di ,dcc2)
AAP(dcc1,Dr )

1

1

AND2 Dr ← Di .D j

AAP(Di ,x1)
AAP(D j ,x2)

AAP(x1,x2,Dr , 0)

1

1

3

OR2 Dr ← Di + D j

AAP(Di ,x1)
AAP(D j ,x2)

AAP(x1,x2,Dr , 1)

1

1

3

XOR2 Dr ← Di ⊕ D j

AAP(Di ,x1,dcc2)
AAP(D j ,x2,dcc4)
AAP(x1,dcc3,x4, 0)
AAP(x2,dcc1,x5, 0)
AAP(x4,x5,Dr , 1)

2

2

3

3

3

Addition
Sum ← Di ⊕ D j ⊕ Dk

Cout ← MAJ3(Di ,D j ,Dk )

AAP(Di ,x1)
AAP(D j ,x2)
AAP(Dk ,x3)

AAP(x1,x2,x3,Cout )
AAP(Cout ,dcc2,dcc4)

AAP(x1,x2,x3,dcc1,dcc2, Sum)

1

1

1

4

2

5
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In order to implement the addition-in-memory, as shown in

Table 1, three AAP-type1 commands first copy the three input data

rows to computational rows (x1,x2,x3). Then, Cout is generated
by AAP-type4 and written back to the designated data row. Again,

Cout row is readout and its inversion is copied to two DCC rows

(dcc2 and dcc4) with AAP-type2. Eventually, AAP-type5 command

activates five rows to implement Sum function.

3.4 Reliability

We performed an extensive circuit-level simulations following the

Ambit’s approach [16] to study the effect of process variation on

both DRA and QRA methods considering a worst-case scenario

variation in all components (cell/BL/WL capacitance and transis-

tor). We ran Monte-Carlo simulation with 45nm PTM library [21]

(DRAM cell parameters were taken from Rambus [8] model) under

10000 trials and increased the amount of variation from ±0% to

±20% for each method. Table 2 shows the percentage of the test

error in each variation. We observe that even considering a sig-

nificant ±10% [16] variation, the percentage of erroneous DRA or

QRA across 10000 trials is just 0.12% and 0.39% which is consistent

with what Ambit reports. Therefore, GraphiDe shows an acceptable

reliability in performing PIM operations. Note that DRA method is

less vulnerable to capacitance variation effects as opposed to TRA,

due to its third fixed-voltage branch. By scaling down the transistor

size, the process variation effect is expected to get worse [16, 17].

Since GraphiDe is mainly developed based on existing DRAM struc-

ture and operation with slight modifications, different methods

currently-used to tackle process variation can be also applied for

GraphiDe (e.g., spare rows). Besides, just like Ambit, GraphiDe chips

that fail testing due to DRA, TRA, and QRAmethods can potentially

be considered as regular DRAM chips alleviating DRAM yield.

Table 2: Process variation analysis.

Variation ±0% ±5% ±10% ±20%

DRA 0.00% 0.00% 0.12% 11.43%

QRA 0.00% 0.08% 0.39% 18.92%

Regarding the error correction, many ECC-enabled DIMMs rely

on calculating some hamming code at the memory controller and

use it to correct any soft errors. Unfortunately, such a feature is not

available for GraphiDe as the data being processed are not visible

to the memory controller. Note that this issue is common across

all PIM designs. To overcome this issue, GraphiDe can potentially

augment each row with additional ECC bits that can be calculated

and verified at the memory module level or bank level. Augmenting

GraphiDe with reliability guarantees is left as future work.

3.5 Virtual memory

GraphiDe has its own ISA with operations that can potentially use

virtual addresses. To use virtual addresses, GraphiDe’s Ctrl must

have the ability to translate virtual addresses to physical addresses.

While in theory this looks as simple as passing the address of the

page table root to GraphiDe and giving GraphiDe’s Ctrl the ability

to walk the page table, it is way more complicated in real-world

designs. The main challenge here is that the page table can be

scattered across different DIMMs and channels, while GraphiDe op-

erates within a memory module. Furthermore, page table coherence

issues can arise. The other way to implement translation capabili-

ties for GraphiDe is through memory controller pre-processing of

instructions being written to GraphiDe instruction registers. For

instance, if the programmer writes instruction AAP add0,add1, then
the memory controller intercepts the virtual addresses and trans-

late them into physical addresses. Note that most systems have

near memory controller translation capabilities, mainly to manage

IOMMU and DMA accesses from I/O devices. One issue that can

arise is that some operations are appropriate only if the resulting

physical addresses are within specific plane, e.g., within the same

bank. Accordingly, the compiler and the OS should work together to

ensure that the operands of commandswill result physical addresses

that are suitable to the operation type. To avoid the complexity of

virtual memory when using GraphiDe, system architects can opt

for designating a continuous physical range that can be used by

GraphiDe and the user/application can use physical addresses for

operands. Directly operating on physical addresses can limit multi-

tasking on GraphiDe, however, we leave supporting multi-tasking

in GraphiDe through virtual memory support as future work.

4 APPLICATION: GRAPH PROCESSING

The GraphiDe’s parallel operations can be easily utilized to acceler-

ate a wide variety of graph processing tasks. For the sake of limited

space, we briefly explain two widely-used tasks so-called matching

index and degree centrality.

Matching index: The matching indexMi, j quantifies the simi-

larity between two vertices (Vi andVj ) based on the number of com-

mon neighbors shared by vertices as (
∑
common neighbors

∑
total number of neighbors

).

The main task here is to find the common and total number of neigh-

bors which can be implemented and accelerated by GraphiDe. Fig.

4 provides a straightforward example to elucidate the mapping and

acceleration method of GraphiDe. Initially, the sample four-vertex

network is converted to adjacency matrix and stored in 4 consec-

utive rows of sub-array. To find the common neighbors of two

particular vertices (e.g. V1, V2), GraphiDe performs parallel AND2
on the rows and SA’s outputs determine the matches (here, V4). In

addition, the total number of neighbors is found by performing OR2
operation on the same rows. Then, GraphiDe’s add operation can

readily process the summation operation as explained earlier. Af-

terwards, the only remaining operation is to divide these numbers

that can be done utilizing a off-chip processing unit to generate

corresponding index matrix.

Figure 4: GraphiDe’s mapping and acceleration for finding

matching index.

Degree centrality:One of the most important graph processing

tasks is degree centrality. This task deals with massive number of
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add operation which basically counts the number of valid links

connected to a vertex. Fig. 5 shows an intuitive example of hardware

mapping and acceleration of such operation performed byGraphiDe

for a small graph. Initially, the designated graph is converted to

adjacency matrix and mapped to consecutive rows of GraphiDe’s

sub-arrays. Now, in the first step, every three rows are activated

throughWLs sequentially (here, (1) and (2)) to perform parallel

add operation based on command sequence tabulated in Table

1 and generate initial Carry (C) and Sum (S) bits. In the second

step, the results are written back to the memory reserved space.

Then, next steps ((3) and (4)) only deal with multi-bit addition of

resultant data starting bit-by-bit from the LSBs of the two words

continuing towards MSBs. There are 2 steps for every bit-position

computation. In the first step of (3), 2WLs (accessing to LSBs of

6 elements) and oneWL (accessing the reserved row initialized

by zero) are enabled to generate the sum and carry. The SAs use

these 3 words to generate sum and carry. During second step, two

WLs are activated to save back the sum and carry bits. This process

continues to MSB. At the end, the degree of each vertex is stored

in memory (e.g. 4 determines the degree of vertex 1 in Fig. 5).

Figure 5: GraphiDe’s mapping and acceleration for add-
based graph processing operations. Here we take degree cen-

trality computation as an example.

5 EXPERIMENTAL RESULTS

We compare GraphiDe with other possible graph processing accel-

eration solutions based on DRAM, HMC, and GPU. We configure

the GraphiDe’s memory sub-array with 512 rows and 256 columns,

4×4 mats (with 1/1 as row/column activation) per bank organized

in H-tree routing manner, 16×16 banks (with 1/1 as row/column

activation) and 512Mb total capacity. As mentioned earlier, enlarg-

ing the chip area provides a higher performance for GraphiDe and

other PIM designs due to the increased number of computational

sub-arrays, though the die size directly impacts the chip cost. There-

fore, an identical physical memory size (512Mb) is considered for

all implementations henceforth. To evaluate the performance of

accelerators, we take three social network data-sets as tabulated

Table 3: Social Network data-sets.

Dataset Nodes Edges Graph Information

ego-Facebook 4,039 88,234 profiles & friends lists from Facebook [10]

dblp-2010 326,186 1,615,400 scientific collaboration network

amazon-2008 735,323 5,158,388 similarity among books reported by Amazon store

in Table 3. Then, we map and run three graph processing tasks i.e.

degree centrality, matching index, and Breadth First Search (BFS)

on them that seek most of GraphiDe’s operations.

5.1 Accelerators’ setup

GraphiDe: To evaluate the performance of GraphiDe as a new PIM

platform, a comprehensive circuit-architecture assessment frame-

work and two in-house simulators are developed. 1- At the circuit

level, we developed GraphiDe’s sub-array with new peripheral cir-

cuity (SA, MRD, etc.) in SPICE 45nm PTM library [21] to verify the

proposed design methods and achieve the performance parameters.

2- An architectural-level simulator is built on top of Cacti [20]. The

circuit level results were then fed into our simulator. It can change

the configuration files corresponding to different array organization

and report performance metrics for AAP-based PIM operations. The

memory controller circuits are designed and synthesized by Design

Compiler [19] with a 45nm industry library. 3- A behavioral-level

simulator is developed in Matlab to calculate the latency and en-

ergy that GraphiDe spends on different graph processing tasks. In

addition, it has a mapping optimization framework to maximize

the performance according to the available resources. Real world

graph consists of millions of vertices and edges that need to be pro-

cessed. To efficiently map such graphs into GraphiDe architecture,

graph partitioning methods are used. Here, we adopt interval-block

partitioning method to balance workloads of each GraphiDe’s chip

and maximize parallelism. We use hash-based method [6] to split

the vertices intoM intervals and then divide edges intoM2 blocks.

DRAM: We developed an Ambit-like [16] accelerator for graph

processing. Ambit implements logic function using capacitor-based

majority functions. We accordingly modified CACTI [20] for eval-

uation of DRAM’s solution. The controllers were synthesized in

Design Compiler [19]. Baseline HMC: We used a conventional ar-

chitecture presented in [14] using HMC as main memory without

instruction offloading functionality. Due to the lack of space, we

refer the readership to above-mentioned papers for the detailed

configuration of each accelerator. GPU: We used the NVIDIA GTX

1080Ti Pascal GPU. The energy was measured with NVIDIA’s sys-

tem management interface. We scaled the achieved results by 50%

to exclude the energy consumed by cooling, etc.

5.2 Energy and Delay

Figure 6 shows normalized energy consumption of the four ac-

celerators on various graph processing tasks. GraphiDe achieves

the highest energy-efficiency in different tasks compared to others

owning to its low-energy and reduced-cycle operations. We observe

that GraphiDe consumes on average 3.1× less energy than that of

Ambit accelerator. The main reason here is the energy-efficiency

of basic operations in GraphiDe; as discussed earlier, GraphiDe can

finish the operations (such as addition) in less number of cycles

using DRA and QRA methods. Fig. 6 shows that GraphiDe solu-

tion saves on average 3.9× and 58.6× energy compared to that of

HMC and GPU solutions, respectively. It is worth pointing out that

HMC and GPU designs are not capable of implementing fast bulk

addition and therefore impose excessive energy consumption to

memory chip in addition-intensive tasks such as degree centrality

analysis. To realize such operation in Ambit platform, we consid-

ered multi-cycle majority-based implementation presented in [5].
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Figure 6: Normalized log-scaled energy of accelerators.

However, HMC solution shows a relatively equal energy-efficiency

in matching index task compared to Ambit.

Figure 7 plots execution time of the GraphiDe and other accelera-

tors on different graph processing tasks. We observe that GraphiDe

solution is on average 4.2× faster than that of Ambit solution and

5.6× faster than HMC. This is mainly because of fast and parallel

in-memory operations of GraphiDe, specifically for implementing

add operation. Additionally, we see that GraphiDe is 83.4× faster

that GPU solution. As can be seen, this directly translates to large

performance improvements for the discussed applications that seek

bulk bitwise operations.
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Figure 7: Normalized log-scaled delay of accelerators.

5.3 Memory bottleneck

Figure 8a reports the Memory Bottleneck Ratio (MBR), i.e. the

time fraction at which the computation has to wait for data and

on-/off-chip data transfer obstructs its performance (memory wall

happens) running matching index task on two data-sets. The eval-

uation is performed according to the peak throughput for each

platform considering number of memory access. The results show

the GraphiDe’s efficiency for solving memory wall issue. We ob-

serve that GraphiDe along with other PIM solutions spend less than

∼20% time for memory access and data transfer. However, GPU

accelerator spends more than 90% time waiting for the loading data.

The less memory wall ratio can be interpreted as the higher Re-

source Utilization Ratio (RUR) for the accelerators which is plotted

in Fig. 8b. We observe that GraphiDe can efficiently utilize up to 70%

of its computation resources. Overall, PIM solutions demonstrates

a high ratio, which reconfirms the results reported in Fig. 8a.

5.4 Area overhead

GraphiDe is developed on top of Ambit [16] (with the area overhead

of <1%).We havemodified the controller andMRD circuits as well as

SAs by adding two reference branches per column. Such enhanced

SAs and peripheral circuitry in GraphiDe’s sub-array occupy less

than 15% of area. Therefore, the overall area overhead of GraphiDe

is ∼1.3% over the commodity DRAM.
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Figure 8: (a) The memory bottleneck ratio and (b) resource

utilization ratio.

6 CONCLUSION

In this paper, we presented GraphiDe, which transforms current

DRAM sub-arrays to massively parallel computational units to

reduce energy consumption dealing with graph processing tasks

and eliminate unnecessary off-chip accesses. The simulation re-

sults on three social network data-sets show GraphiDe can roughly

achieve 3.1× energy-efficiency improvement and 4.2× speed-up

over the recent processing-in-DRAM platform. It achieves ∼59×

higher energy-efficiency and 83× speed-up over GPU-based accel-

eration methods.
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